M.Sc MATHEMATICS

[CBCS Revised]

(With effect from 2015 onwards)

Courses of Study
Scheme of Examinations
And Syllabi

Post Graduate and Research Department of Mathematics
Nehru Memorial College (Autonomous)

Puthanampatti -621007

Trichy District

PG & RESEARCH DEPARTMENT OF MATHEMATICS

NEHRU MEMORIAL COLLEGE (AUTONOMOUS)

PUTHANAMPATTI - 621007

M.Sc., PROGRAMME IN MATHEMATICS (CBCS)

(For the candidate to be admitted form the year 2015 onwards)

Semester	Courses	No. of Credits
I	I 5 Core courses	
II	4 Core courses 1 Core Elective course	23
III	3 Core courses 1 Core Elective course 1 Open Elective course	22
IV	3 Core courses 2 Core Elective courses	22
TOTAL	20 courses	90 credits

NEHRU MEMORIAL COLLEGE (AUTONOMOUS), PUTHANAMPATTI-621 007 M.Sc Mathematics Course Structure under CBCS Pattern 2015

Sem	Sub. Code	Course	Subject Title	Hrs/ wk	Credits	Internal	External	Total
I	15PM101	CC 1	Linear Algebra	6	5	40	60	100
	15PM102 CC 2 Re		Real Analysis	6	5	40	60	100
	15PM103	CC 3	Ordinary Differential	6	5	40	60	100
			Equations					
	15PM104	CC 4	Integral Equations, Calculus of	6	4	40	60	100
	15PM105	CC 5	Variations and Fourier Transforms	6	4	40	60	100
	15PM105	CC 3	Graph Theory					
			TOTAL	30	23	200	300	500
II	15PM206	CC 6	Abstract Algebra	6	5	40	60	100
	15PM207	CC 7	Complex Analysis	6	5	40	60	100
	15PM208	CC 8	Topology	6	5	40	60	100
	15PM209	CC 9	Partial Differential Equations	6	4	40	60	100
		OEC	**(open toall)	6	4	40	60	100
			TOTAL	30	23	200	300	500
III	15PM311	CC 10	Functional Analysis	6	5	40	60	100
	15PM312	CC 11	Measure and Integration	6	5	40	60	100
	15PM313	CC 12	Number Theory	6	4	40	60	100
		CEC 1	*	6	4	40	60	100
		CEC 2	*	6	4	40	60	100
			TOTAL	30	22	200	300	500
IV	15PM416	CC 13	Differential Geometry	6	5	40	60	100
	15PM417	CC 14	Stochastic Process	6	4	40	60	100
	15PM420P	CC 15	Project Work	6	5	40	60	100
		CEC 3	*	6	4	40	60	100
		CEC 4	*	6	4	40	60	100
			TOTAL	30	22	200	300	500
			GRAND TOTAL	120	90	800	1200	2000

*Candidates has to choose any one of the Core Elective Courses(CEC) offered by our department.

** Candidates has to choose any one of the Open Elective Courses(OEC) offered by our /other department.

CORE COURSES (CC)

Course	Title of the Courses	Lecture	Tutorial	Practical	Credit	Prerequisite(Ex
		Hours	Hours	Hours		posure)
CC1	Linear Algebra	4	2	0	5	Algebra-B. Sc
						(Maths) Level
CC2	Real Analysis	4	2	0	5	Sequences and
						Series& Real
						Analysis- B. Sc
						(Maths) Level
CC3	Ordinary Differential	4	2	0	5	Differential
	Equations					Equation- B. Sc
						(Maths) Level
CC4	Integral Equations,	4	2	0	4	Differential
	Calculus of variations and					Equation -B. Sc
	Fourier Transforms					(Maths) Level
CC5	Graph Theory	4	2	0	5	Graph Theory -
						B. Sc (Maths)
						Level
CC6	Abstract Algebra	4	2	0	5	CC1
CC7	Complex Analysis	4	2	0	5	CC2
CC8	Topology	4	2	0	5	CC2
CC9	Partial Differential	4	2	0	4	CC3
CC9	Equations	 1	2	U	4	CCS
CC10	Functional Analysis	4	2	0	5	CC1,CC2 ,CC7&
CC10	T directorial 7 that y sis	7		O	3	CC8
CC11	Measure and Integration	4	2	0	5	CC2,CC8 &
						CC10
CC12	Number Theory	4	2	0	4	CC1 & CC6
CC13	Differential Geometry	4	2	0	5	CC2
CC14	Stochastic Process	4	2	0	4	Probability
						&Statistics –
						B. Sc (Maths)
						Level
CC15	Project Work	4	2	0	5	CC1-CC15

CORE ELEECTIVE COURSES (CEC)

Course	Title of the Courses	Lecture Hours	Tutorial Hours	Practical Hours	Credit	Prerequisite(Exposure)
CEC1A 15PM314 b	Fluid Dynamics	4	2	0	4	Dynamics- B. Sc (Maths) Level
OEC1B 15PM314 a	Cryptography	4	2	0	4	Algebra- B. Sc (Maths) Level&CC1
CEC2A 15PM315 b	Fuzzy Mathematics	4	2	0	4	Algebra- B. Sc (Maths) Level
CEC2B 15PM315 a	Combinatorics	4	2	0	4	Algebra- B. Sc (Maths) Level
CEC3A 15PM418 a	Numerical Analysis	4	2	0	4	Numerical Analysis- B. Sc (Maths) Level
CEC3B 15PM418 b	Optimization Techniques	4	2	0	4	OperationResearch- B. Sc (Maths) Level
CEC4A 15PM419 a	Classical Dynamics	4	2	0	4	Mechanics–B. Sc(Maths) Level
CEC4C 15PM419 c	Mathematical Probability	4	2	0	4	Probability & Statistics-B. Sc (Maths) Level
CEC4B 15PM419 b	Coding Theory	4	2	0	4	Algebra- B. Sc (Maths) Level

OPEN ELEECTIVE COURSES (OEC)(Courses Offered to Other Department)

Course	Title of the Courses	Lecture Hours	Tutorial Hours	Practical Hours	Credit	Prerequisite (Exposure)
OEC1	Mathemati	4	2	0	4	+2 Level
15PM210b	cal					Mathematics
	Modeling					
	and					
	Simulation					
OEC2	Statistics	4	2	0	4	+2 Level
15PM210c						Mathematics

NEHRU MEMORIAL COLLEGE (AUTONOMOUS) Puthanampatti, Trichy Dist.

SYLLABUS REVISION 2014-2015

Department : Mathematics

Academic Programme offered : PG Programme

Year of Implementation : 2015-2016

OBE Elements for M.Sc Mathematics programme.

Programme Educational Objectives (PEO)

PEO 1: Technical Proficiency:

The program gives success in getting employment in different areas, such as Government, public and private sectors.

PEO 2: Professional Growth:

As mathematics is mother of all sciences, its impact is very wide covering all the areas of research and development.

PEO 3: Management Skills:

This program helps each individual in developing personality skills like time management, crisis management, stress management, interviews and working as a team and group.

PEO4: Ethical Skills:

This program makes the individual to understand and appreciate professional ethics, community living and Nation Building initiatives.

Program Outcome (PO)

PO1: Apply knowledge and principle of Mathematics, in all the fields of learning including higher research and the same to the needs of Employer/Institution/Society.

PO2: Gain analytical skills in the field of Mathematics.

PO3: Develop the logical thinking skills

PO3: Understand the concepts of real and complex analysis

PO4: Use the knowledge of pure and applied mathematics to solve complex mathematical problems

PO5: Innovate and invent novel ideas to model the real world problems.

PO6: Crack the exams approved by UGC namely CSIR – NET (JRF/Lectureship) and SET.

PROGRAMME SPECIFIC OUTCOME (PSO)

- PSO 1: Connect Mathematics to real life problems in their lives.
- PSO 2: Do intensive research in pure and applied mathematics.
- PSO 3: Analyze problems of industry and society
- PSO 4: Model and provide solutions to scientific and real life situations.
- PSO 5: Prepare for a career in which critical thinking is a central feature.

CORE COURSES (CC)

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course		Title	Hours/Wee	k Semester	Credits
15PM101	CC1	Line	ar algebra	6	1	5
K -1 Acquire/Remember K -2 Understand K -3 Apply K -4 Evaluate K -5 Analyze						
Course (Objectives	Aim o	aspects of L	idents a thorou Linear Algebra Idents in proble	ngh knowledge of tem solving as a pre	
Employability and Skill Development Local, National, Ro Global need			egional and	Problem Solving & Learning	& Participative	

UNIT I

 $\label{linear} Linear\ Transformations-The\ Algebra\ of\ Linear\ Transformations-Isomorphism-Representations\ of\ Transformations\ by\ Matrices.$

UNIT II

Determinants: Commutative Rings – Determinants Functions – Permutations and the uniqueness of Determinants – Additional properties of Determinants.

UNIT III

Canonical Forms – Characteristic Values-Invariant Subspaces – Simultaneous Triangulation; Simultaneous Diagonalization.

UNIT IV

Direct-sum Decompositions – Invariant Direct sums – The Primary Decomposition Theorem.

UNIT V

Cyclic subspace and Annihilators – Cyclic Decompositions and the Rational Form – The Jordan Form.

TEXT BOOK:

Kenneth Hoffman & Ray Kunze, Linear Algebra, Second Edition, Prentice Hall of India Pvt. Ltd, 2000.

UNIT I: 3.1-3.5, UNIT II: 5.1-5.4, UNIT III: 6.1. -6.5, UNIT IV: 6.6 -6.8, UNIT V: 7.1-7.4.

- 1) I.N.Herstein, Topics in Algebra, Wiley Eastern Ltd., New Delhi, 1975.
- 2) I.S.Luther & I.B.S Passi, Algebra, Vol. I Groups, (1996), Vol. II Rings, (1999), Narosa Publishing House.
- 3) N.Jacobson, Basic Algebra, Vol. I & II. Hindustan Publishing Company, 1980.

Course Outcomes	On completion of the course, students should be able to CO 1: apply the knowledge of bases and dimension of vector spaces and linear transformation. CO2: understand the operations on matrices, matrix of linear transformation and properties of determinant. CO3: evaluate the eigen values and the eigen vectors of linear transformations. CO4: demonstrate on applying the Jordan canonical forms to vector spaces.
--------------------	---

Code	Course	Title	Hours/week	Semester	Credits	
15PM102	CC2	Real Analysis	6	1	5	
Cogniti	ive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 				
Course (Objectives	 The Course aims to understand the basics of metric spaces lay the foundation for the subsequent study of advanced real analysis, complex analysis and functional analysis. 				
Employability		Global need		Problem Solving of Participatory Lear		

UNIT I

Basic topology, Numerical Sequences and Series: Metric Spaces – Compact sets – Perfect sets – Connected sets – Convergent sequences – Subsequences – Cauchy's sequences.

UNIT II

Continuity: Limits of functions – Continuous functions – Continuity and Compactness – Continuity and Connectedness – Discontinuities – Monotonic functions – Infinite limits and limits at infinity.

UNIT III

Differentiation: Derivative of real function – Mean value theorem –Continuity of derivatives – derivatives of higher order- Taylor's theorem – Differentiation of Vector valued functions.

UNIT IV

Riemann - Stieltjes Integral: Definition and Existence – Properties – Integration and Differentiation – Integration of Vector valued functions.

UNIT V

Sequences and Series of Functions: Uniform Convergence and Continuity – Uniform Convergence and Differentiation – Equi - continuous families of functions – The Stone-Weierstrass Theorem.

TEXT BOOK

Walter Rudin, Principles of Mathematical Analysis, Third Edition, McGraw Hill, 1976.

UNIT I: Ch 2 (Sections 2.15 – 2.47), Ch 3 (Sections 3.1 – 3.14)

UNIT II: Ch 4 UNIT III: Ch 5 UNIT IV: Ch 6 UNIT V: Ch 7

- 1. Tom Apostal, Mathematical Analysis, Narosa Publishing House, New Delhi 1985.
- 2. A.J. White, Real Analysis: An Introduction, Addition Wesley Publishing Co.inc. 1968.

	On completion of the course, students should be able to						
	CO1: describe the concepts of sets and functions, metric spaces, continuity and						
	connectedness.						
Course	CO2: demonstrate on sequences and series.						
Outcomes	CO3: demonstrate on applying Baire Category Theorem, Banach Contraction						
	Principle .						
	CO4: analyze Cauchy sequences, complete metric spaces and connected metric						
	spaces.						

Code	Course	Title	Hours/Week	Semester	Credits		
15PM103	CC3	Ordinary Differential Equations	6	1	5		
Cognitiv	ve Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 					
Course C	Dbjectives	The Course aims to • gain the knowledge of the methods of solving ordinary differential equations, special functions and nonlinear autonomous system of equations.					
Employability a Development	nd Skill	Global need	•		g & Participatory		

UNIT I

Second Order Linear Equations And Power Series Method: The general solution of the homogeneous equation – The use of a known solution to find another – method of variation of parameters – A review of Power Series – Series solution of first order equations – Ordinary points.

UNIT II

Power Series Solutions And Special Functions: Singular Points – Regular Singular Points – Gauss's Hyper Geometric Equation – The point at infinity.

UNIT III

Some Special Functions Of Mathematical Physics: Legendre polynomials – Properties of Legendre Polynomials – Bessel Functions – The Gamma Function – Properties of Bessel Functions.

UNIT IV

System of First Order Equations: Linear Systems – Homogeneous linear system with constant coefficient – The method of successive approximations – Picard's Theorem.

UNIT V

Non-Linear Equations: Autonomous System: The phase plane and its phenomena - Types of Critical points - Stability - Critical points and stability for linear systems - Stability by Liapunov's direct method - Simple critical points of non-linear systems.

TEXT BOOK

G.F. Simmons, Differential Equations with Applications and Historical Notes, TMH, New Delhi, 1984.

UNIT I: Ch 3(15, 16, 19) & Ch 5(25, 26, 27) UNIT II: Ch 5(28- 31)

UNIT III: Ch 6(32-35) UNIT IV: Ch 7(37& 38) & Ch 11(55&56) UNIT V: Ch 8(40-44).

REFERENCE BOOK

1. W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971

	On completion of the course, students should be able to						
	CO1:describe the methods of solving first and second order ODE and non linear						
Course	autonomous system of ODE.						
Outcomes	CO2: understand the special functions of Mathematical Physics and the concept						
	of stability and critical points of linear system of equations.						
	CO3: evaluate the power series solution of ODE.						
	CO4: demonstrate on applying Picard's theorem to find the solution of ODE's.						

Code	Course	Title	Hours/Week	Semester	Credits		
15PM104	CC4	Integral Equations, Calculus of Variations and Fourier Transforms	6	1	4		
Cogni	itive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 					
The Course aims to introduce the concepts of integral equations, calculus of variate linear integral equations, method of successive approximate variational problems with fixed boundaries, variational problems with moving boundaries and Fourier Transform.					roximations,		
Employability and Skill Development		Global need	Problem S Learning	olving & Part	icipatory		

UNIT I

Linear Integral Equations: Definition, Regularity Conditions – Special kind of Kernels – Eigen values and Eigen Functions – Convolution Integral – The Inner and Scalar Product of Two Functions –Reduction to a system of Algebraic Equation – Examples – Fredholm Alternative – Examples – An Approximate Method.

UNIT II

Method of Successive Approximations: Iterative Scheme – Examples – Volterra Integral Equation – Examples – Some Results about the Resolvent Kernel – Classical Fredholm Theory: The method of Solution of Fredholm - Fredholm's First Theorem – Second Theorem – Third Theorem (Statement only).

UNIT III

Variational Problems with Fixed Boundaries: The concept of variation and its properties - Euler's equations – variational problems for functionals of the form – Functionals Dependent on Higher order derivatives – Functions dependent on Functions of several Independent Variables – Variational problems in parametric Form.

UNIT IV

Variational Problems with Moving Boundaries: Functional of the form $I\left[y\left(x\right)\right] = \int\limits_{x_1}^{x_2} F(x,y,y') dx - \text{Variational Problem with a movable Boundary for a Functional}$

Dependent on Two functions – One sided variations – Sufficient conditions for an extremum field of extremals : – Jacobi condition – Weirstrass Function – Legendre condition.

UNIT V

Fourier Transform: Fourier sine and cosine transforms-Properties, convolution-solving integral Equations-Finite Fourier transform-finite Fourier sine and cosine transform-Fourier integral theorem parseval Identity. Hankel transform: Definition-Inverse formula-Linearity property-Hankel transform of the derivatives of the function-Hankel transform of differential operation.

TEXT BOOKS

- 1. Ram. P. Kanwal, Linear Integral Equations Theory and Technique, Academic press 1971.
- 2. A.S. Gupta, Calculus of Variations with Application, Prentice-Hall of India Pvt. Ltd., New Delhi, 1997.
- 3. A.R. Vasistha, R.K. Gupta, Integral Transforms, Krishna Prakashan Media Pvt. Ltd., India 2002.

UNIT I: Ch 1 and 2 of (1). UNIT II: Ch 3 and 4 of (1) UNIT III: Ch 1(1.1 - 1.6) Of (2) UNIT IV: Ch 2(2.1-2.3) &Ch 3(3.1 to 3.4) of (2) UNIT V: Ch 7 and 9 of (3)

- 1. F.G.Tricomi, Integral Equations, Dover Publications Inc, New York, 1897.
- 2. Bruce Van Brunt, Calculus of Variations, Springers, 2006.
- 3. L. Elsgolts, Differential equations and the calculus of variations, Mir Publishers, Moscow 1970.

Course	On completion of the course, students should be able to					
Outcomes	CO1: solve the linear integral equations.					
	CO2: find the solutions of Volterra and Fredholm integral equations.					
	CO3: demonstrate on variational problems on moving boundaries and fixed					
	boundaries.					
	CO4: find the Fourier transform and Hankel transform of various functions.					

Code	Course	Title	Hours/week	Semester	Credits
15PM105	CC5	Graph Theory	6	1	4
K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze					
Course Objectives		-		graph theory such rtex colorings, ed	
Employability		Global need Problem Solving & Particip Learning			Participatory

UNIT I

Graphs and simple graphs – Graph isomorphism – The Incidence and adjacency Matrices – Sub graphs – Vertex Degrees – Path and Connection – Cycles – Trees – Cut Edges and Bonds – Cut Vertices.

UNIT II

Connectivity – Blocks - Euler tours – Hamilton Cycles.

UNIT III

Matchings: Matchings and Coverings in Bipartite Graphs –Edge Chromatic Number – Vizing's Theorem.

UNIT IV

 $Independent\ sets-Ramsey's\ Theorem-Chromatic\ Number-Brook's\ Theorem-Chromatic\ Polynomials.$

UNIT V

Plane and planar Graphs – Dual graphs – Euler's Formula – The Five – colour Theorem and the Four-Colour Conjecture.

TEXT BOOK

J.A.Bondy and U.S.R. Murthy, Graph Theory and Applications, Macmillan, London, 1976.

UNIT I Ch 1 (1.1 – 1.7) & Ch 2 (2.1 – 2.3) UNIT II Ch 3 (3.1& 3.2) & Ch 4 (4.1 & 4.2) UNIT III Ch 5 (5.1& 5.2) & Ch 6 (6.1-&6.2) UNIT IV Ch 7 (7.1 & 7.2) & Ch 8 (8.1, 8.2 & 8.4) UNIT V Ch 9 (9.1 – 9.3 & 9.6)

- 1. J. Clark and D.A.Holton, a First look at Graph Theory, Allied Publishers, New Delhi, 1995.
- 2. R. Gould, Graph Theory, Benjamin/Cummings, Menlo Park, 1989.
- 3. A. Gibbons, Algorithmic Graph Theory, Cambridge University Press, Cambridge, 1989.
- 4. R.J. Wilson and Watkins, Graphs: An introductory Approach, John Wiley and Sons, New York, 1989.
- 5. S.A. Choudum, a First Course in Graph Theory, MacMillan India Ltd. 1987.

Course Outcomes	On completion of the course, students should be able to CO1: understand the definitions namely, cut vertex, bridge, blocks and automorphism group of a graph. CO2: study the properties of trees and connectivity. CO3: identify Eulerian graphs and Hamiltonian graphs. CO4: understand the concepts planarity including Euler identity, matchings and colorings.
Outcomes	CO2: study the properties of trees and connectivity. CO3: identify Eulerian graphs and Hamiltonian graphs. CO4: understand the concepts planarity including Euler identity, matchings and

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course	Title	Hours/Week	Semester	Credits
15PM206	CC6	Abstract Algebra	6	2	5
Cogniti	ve Level	 K - 1 Acquire/ K - 2 Understa K - 3 Apply K - 4 Evaluate K - 5 Analyze 			
Course Objectives		and ring the	nowledge of adv neory.	ranced concepts on ments of Galois the	
Employability		Global need		Problem Solving & Learning	k Participatory

UNIT I

Group theory: Another counting principle, Sylow's theorem, Direct Products, Finite Abelian groups.

UNIT II

Ring theory: Euclidean Rings, A particular Euclidean Ring, Polynomial Rings, Polynomials over the Rational Field, Polynomial Rings over commutative Rings.

UNIT III

Vector spaces and modules: Dual spaces, Inner product spaces, Modules.

UNIT IV

Fields: Extension Fields, Roots of polynomials, More about Roots, The Elements of Galois's theory.

UNIT V

Linear transformations: Characteristic Roots, Matrices, and Canonical Forms: Triangular Form, Nilpotent Transformations, Hermitian, Unitary and Normal Transformations.

TEXT BOOK

N. Herstein, Topics in Algebra, second Edition John Wiley and sons Pvt. Ltd., 1975.

UNIT I: Ch2 (2.11 - 2.14) UNIT II: Ch3 (3.7 - 3.11) UNIT III: Ch4 (4.3 - 4.5)

UNIT IV: Ch5 (5.1, 5.3, 5.5& 5.6) UNIT V: Ch6 (6.2, 6.3, 6.4 & 6.10).

- 1) Serge Lang, Algebra, Revised Third Edition, Springer Verlag, 2002.
- 2) Kenneth Hoffman and Ray Kunze, Linear Algebra, Second Edition ,Prentice-Hall of India pvt.Ltd.,New Delhi,1975.
- 3) David S.Dummit and Richard M.Foote, Abstract Algebra, Wiley and Sons. Third Edition, 2004.

	On completion of the course, students should be able to					
	CO 1: understand Sylow's theorem and its applications and Galois theory and its					
Course	applications					
Outcomes	CO 2: apply suitable methods to find the roots of the polynomials					
	CO 3: analyze linear transformations.					
	CO 4: evaluate characteristic roots of the matrix					

Code	Course	Title	Hours/Week	Semester	Credits	
15PM207	CC7	Complex Analysis	6	2	5	
Cognitive Level		K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze				
Course Objectives		to postgraduenable the lintegrals.give a deeper	ansition from u ate advanced to earners to unde	rstand and eval	mentary results uate the definite d topics such as	
Employability		Global need		Problem Solving Learning	& Participative	

UNIT I

Elementary Point Set Topology: Sets and Elements – Metric spaces – Connectedness – Compactness – Continuous Functions – Topological spaces. Conformality: Arcs and closed curves – Analytic functions in regions – Conformal mapping length and Area; Linear Transformations: The linear group – The cross ratio – Symmetry.

UNIT II

Fundamental theorems in complex integration: Line integrals – Rectifiable Arcs – Line integrals as functions of Arcs – Cauchy's theorem for a rectangle – Cauchy's theorem in a disk; Cauchy's integral formula: The index of a point with respect to a closed curve – The integral formula – Higher derivatives.

UNIT III

Local Properties of Analytic Functions: Removable singularities – Taylor's theorem – Integral representation of the nth term - Zeros and poles – Algebraic order of f (Z) – Essential singularity – The local mapping – The open mapping theorem – The maximum principle.

UNIT IV

The general form of Cauchy's theorem: Chains and cycles – Simple connectivity – Homology – The general statement of Cauchy's theorem – Proof of Cauchy's theorem – Locally exact differentials – Multiply connected regions; The calculus of residues; The reside theorem – The Argument principle – Evaluation of definite integrals.

UNIT V

Harmonic Functions: Definition and Basic properties – The mean – value property – Poisson's Formula – Schwarz's theorem – The reflection principle; power series expansions – Weierstrass' theorem – The Taylor series – The Laurent series.

TEXT BOOK(S):

Lars V. Ahlfors, Complex Analysis, 3rd edition, M C Graw-Hill Book Company, Tokyo, 1979. UNIT I: Ch 3 (1.1- 1.6, 2.1 - 2.4 & 3.1 - 3.3) UNIT II: Ch 4 (1.1 - 1.5 & 2.1-2.3) UNIT III: Ch 4 (3.1- 3.4) UNIT IV:Ch 4 (4.1 - 4.7, 5.1- 5.3) UNIT V:Ch 4 (6.1 - 6.5) & Ch 5 (1.1 - 1.3)

- 1. Serge Lang, Complex Analysis, Addison Wesley, 1977.
- 2. S. Ponnusamy, Foundations of Complex Analysis, Narosa Publishing House, 1997.

	On completion of the course, students should be able to CO1: acquire the knowledge of analytic functions and Mobius transformation.					
Course	CO2: understand the concept of complex integration.					
Outcomes	CO3: demonstrate on Cauchy theorems and open mapping theorem.					
	CO4: classify the singularities and evaluate the residue					

Code	Course	Title	Hours/Week	Semester	Credits
15PM208	CC8	Topology	6	2	5
Cognitive Course Ob		K-1 Acqui K-2 Under K-3 Apply K-4 Evalu K-5 Analy The Course ai	ate vze ms to enable the students to	o learn about the essent nd their properties in ter pactness etc.	
Employability Global nec		Global need	Problem Solving & Participative Learning		rticipative

UNIT I

 $Topological\ spaces-Basis\ for\ a\ topology-The\ order\ topology-The\ product\ topology\ on\ XxY-The\ subspace\ topology-Closed\ sets\ and\ limit\ points.$

UNIT II

Continuous functions – the product topology – The metric topology.

UNIT III

Connectedness: Connected subspaces of the Real line – Components and local connectedness.

UNIT IV

 $\label{lem:compactness:} Compact sunspaces \ of \ the \ Real \ line \ - \ Limit \ point \ compactness \ - \ Local \ compactness.$

UNIT V

The Countability Axioms – The separation Axioms – Normal spaces – The Urysohn Lemma – The Urysohn metrization theorem – The Tietz extension theorem.

TEXT BOOK(S):

James R. Munkres, Topology $(2^{nd}$ edition), Peassen Education pvt. Ltd., New Delhi-2002 (Third Indian Reprint)

UNIT I: Ch 2 (12 - 17) UNIT II: Ch 2 (18 - 21) UNIT III: Ch 3(23 - 25)

UNIT IV: Ch 3 (26 - 29) UNIT V: Ch 4 (30 - 35)

- 1. G.F. Simmons, Introduction to topology & Modern Analysis, M.C. Graw Hill Company, 1963.
- 2. James Dugundji, Topology, Prentice Hall of India Pvt Ltd, 1975.

	On completion of the course, students should be able to					
	CO1: develop their abstract thinking skills					
	CO2: provide precise definitions and appropriate examples and counter examples					
Course	of fundamental concepts in general topology.					
Outcomes	CO3: acquire knowledge about various types of topological spaces and their					
	properties					
	CO4: appreciate the beauty of the mathematical results like Ury Zohn's Lemma					
	and understand the dynamics of the proof techniques.					

Code	Course	Title	Hours/Week	Semester	Credits	
15PM209	СС9	Partial Differential Equations	6	2	4	
Cognitive Level	K-1 Acquire/Reme K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze	mber				
Course Objectives	 The Course aims to help the students to understand linear and non linear partial equations and solving them using Charpit's and Jacobi's methods, methods of separation of variables and by method of integral transforms. the study of Laplace equation, wave equation and diffusion equation and their classifications. 					
Employabili Developmen	· ·	National need		roblem Solving articipative Lea		

UNIT I

First Order PDE – Curves and Surfaces – Genesis of First Order PDE – Classification of Integrals – Linear Equations of the First order – Pfaffian Differential Equations – Compatible Systems – Charpit's Method – Jacobi's Method.

UNIT II

Integral Surfaces Through a Given Curve – Quasi-linear Equations – Non-linear First order PDE.

UNIT III

Second order PDE: Genesis of second order PDE – Classification of second order PDE – One-Dimensional wave Equation – Vibrations of an Infinite string – Vibrations of a Semi-infinite string – Vibrations of a string of Finite length (Method of Separation of variables).

UNIT IV

Laplace's Equation: Boundary Value Problems – Maximum and Minimum principles – The Cauchy Problem – The Dirichlet problem for the Upper Half Plane - The Neumann Problem for the Upper Half Plane – The Dirichlet Interior problem for a circle – The Dirichlet Exterior problem for a circle – The Neumann problem for a circle – The Dirichlet problem for a Rectangle – The Harnack's Theorem – Laplace's Equation – Green's Function.

UNIT V

Heat Conduction Problem – Heat Conduction Infinite Rod Case – Heat conduction Finite Rod case – Duhamel's principle – Wave Equation – Heat Conduction Equation.

TEXT BOOK

T. Amarnath, an Elementary Course in Partial Differential Equations, Narosa1997.

UNIT I: Ch 1 (1.1-1.8) UNIT II: Ch 1 (1.9-1.11) UNIT III: Ch 2 (2.1–2.3.5) except 2.3.4. UNIT IV: Ch 2 (2.4 – 2.4.11) UNIT V: Ch 2 (2.5 – 2.6.2).

REFERENCE BOOKS

I.C. Events, Partial Differential Equations, Graduate studies in Mathematics, vol 19, AMS, 1998.

Course Outcomes	 On completion of the course, students should be able to CO1: recollect the first order and second order partial differential equations and their solution. CO2: understand the linear partial differential equations with constant and variable coefficients, boundary value problems and application of calculus of variations. CO3: gain good knowledge in applying Charpit's and Jacobi's methods, method of separation of variables and the method of integrals to obtain solutions of partial differential equations. CO4: demonstrate on the canonical forms of second order PDEs and bounded value problems by Dirichlet and Neumann.
--------------------	--

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course	Title	Hours/Weel	Semester	Credits
15PM311	CC10	Functional Analysis	6	3	5
K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze					
Course Objectives		 The Course aims to learn the concepts of normed Spaces, inner product spaces, linear operator, linear operator on Hilbert spaces and compact operators. 			
Employability		Global need		Problem Solving & Learning	Σ Participative

UNIT I

Banach Spaces: The definition and some examples – Continuous linear transformations – Hahn-Banach theorem – The natural imbedding of N in N^{**} - The Open mapping theorem – The Conjugate of an Operator.

UNIT II

Hilbert Spaces: The definition and some simple properties – Orthogonal Complements – Orthonormal sets – The Conjugate space H* - The adjoint of an operator – Self-adjoint operators – Normal and Unitary operators – Projections.

UNIT III

Finite Dimensional Spectral theory: Matrices – Determinants and the spectrum of an operator – The spectral theorem – A survey of the situation.

UNIT IV

General preliminaries on Banach Algebras: The definition and some examples - Regular and singular elements - Topological divisors of zero - The spectrum - The formula for the spectral radius - The radical and semi-simplicity.

UNIT V

The structure of commutative Banach Algebras: The Gelfand mapping – Applications of the formula $r(x) = \text{Lim } ||x^n||^{1/n}$ – Involutions in Banach Algebras – The Gelfand –Neumark theorem.

TEXT BOOK

1. G. F. Simmons, Introduction to topology and Modern Analysis, TMH edition 1963. UNIT I: Ch 9 UNIT II: Ch 10 UNIT III: Ch 11 UNIT IV: Ch 12 UNIT V: Ch 13

- 1. Walter Rudin, Functional Analysis, TMH edition, 1964.
- 2. B. V. Limaye, Functional Analysis, Wiley Eastern limited, Bombay, second print, 1985.
- 3.K. Yosida, Functional Analysis, Springer Verlag, 1964.
- 4.Laurent Schwarz, Functional Analysis, Courant Institute of Mathematical sciences, New York University, 1864.

	On completion of the course, students should be able to CO1: understand the concept of Normed Spaces
Course	CO2: apply the idea of linear operators and compact operators
Outcomes	CO3: evaluate Ortho normal basis
	CO4: demonstrate spectral theory

Code	Course	Title	Hours/Week	Semester	Credits
15PM312	CC11	Measure and Integration	6	3	5
Cogniti	ve Level	K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze			
Course Objectives Aim of this course is to introduce the concepts of measure on real line, int of non-negative functions, abstract measure space Spaces, Signed measure.		-			
Employabil	ity	Global need		Problem Solving & Learning	ż Participative

UNIT I

Measure on Real line - Lebesgue outer measure - measureable sets-Regularity measureable Function- Borel and Lebesgue measurability.

UNIT II

Integration of non-negative functions-the general integral, integration of series, Riemann and Lebesgue integrals.

UNIT III

Abstract measure spaces - Measures and outer measures, completion of a measure, measure spaces, Integration with respect to a measure.

UNIT IV

 L^P spaces - convex functions, Jenson's inequality, inequalities of Holder and Minkowski, completeness of $L^P\left(\mu\right)$.

UNIT V

Signed measure - Hahn decomposition, measurability in a product spaces, Fubini's theorem.

TEXT BOOK

De Barra, Measure Theory and Integration, New Age International Pvt Limited. UNIT I: Ch 2(2.1-2.5) UNIT II: Ch3 (3.1-3.4) UNIT III: Ch 5(5.1-5.6) UNIT IV: Ch 6(6.1-6.5) UNIT V: Ch 8(8.1 & 8.2) & Ch10 (10.1 & 10.2)

- 1) M.E.Munroo addition-Measure and Integration, Wesley, Second Edition Publishing Company, 1971.
- 2) H.L.Royden, Real Analysis, PHI, Third Edition, 1989.
- 3) R. G.Bartle, Elements of Real Analysis, John Wiley, 1976.

	On completion of the course, students should be able to		
Course	CO 1: acquire the concept of Lebesgue measure, measurable set.		
	CO 2: understand the concept of integration of non negative functions.		
	CO 3: demonstrate on Jenson's inequality and Hahn decomposition theorem and		
	Fubini's theorem.		
	CO 4: analyze the properties of L ^p spaces.		

Code	Course	Title	Hours/week	Semester	Credits
15PM313	CC12	Number Theory	6	2	4
Cognitive Level	 K - 1 Acqui K - 2 Under K - 3 Apply K - 4 Evalu K - 5 Analy 	ate			
Course Objectives		e concepts of divisibilities forms, some function	• • • •	-	•
Employability and Skill Development	Global need		Problem Solving a Learning	& Participative	;

UNIT I

Divisibility: Introduction-Divisibility-Primes-The Bionomical Theorem.

UNIT II

Congruence-Solutions of Congruence-The Chinese Remainder Theorem-Techniques of Numerical Calculation-Prime Power Module-Primitive roots and Power Residue.

UNIT III

Quadratic Reciprocity and Quadratic Forms: Quadratic Residues- Quadratic Reciprocity-The Jacobi Symbol-Binary Quadratic Forms.

UNIT IV

Some Function of Number Theory: Greatest integer Function-Arithmetic Functions –The Mobius Inversion Formula-Recurrence Functions.

UNIT V

Some Diophantine Equations: The Equation ax+ by=c –Simultaneous Linear Equations-Pythagorean Triangles-Assorted Examples.

TEXT BOOK

Ivan Nivan, Herbert S.Zuckerman and Hugh L.Montgomery, An Introduction to the theory of Numbers, Fifth edition., John Wiley and Sons Inc,2009.

UNIT I: Ch 1 UNIT II: Ch 2(2.1-2.4, 2.6 & 2.8) UNIT III: Ch 3(3.1-3.4)

UNIT IV: Ch 4(4.1-4.4) UNIT V: Ch 5(5.1-5.4)

- 1. David M.Burton, Elementary of Number theory, W.M.C Brown Publishers, Dubuque, Lawa, 1989.
- 1. William.J.Leveque, Fudamentals of Number theory, Addison-Wesley Publishing Company, Phillipines, 1977.
- 3. Tom.M.Apostal-Introduction to Analytic Number theory, Narosa, New Delhi.

Course Outcomes Course Course Course Council and Council and Course Cou	n

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course	Title	Hours/Week	Semester	Credits
15PM416	CC13	Differential Geometry	6	4	5
Cognitive Level		K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze			
Course Objectives		Aim of this course is to • make the student map, Geodesics or			
Employability and Skill Development Global need		Global need		olem Solving & Pa	rticipative

UNIT I

Space Curves: Definition of a Space Curve – Arc length – Tangent – normal and Binormal Curvature and Torsion – Contact between curves and Surfaces – Tangent Surface – Involutes and Evolutes – Intrinsic equations – Fundamental existence Theorem for space curves – Helices.

UNIT II

Intrinsic Properties of a Surface: Definition of a surface – Curves on a surface – Surface of revolution – Helicoids – Metric – Direction Co-efficient – Families of curves – Isometric correspondence – Intrinsic properties.

UNIT III

Geodesics: Geodesics – Canonical geodesic equations – Normal property of geodesics – Existence theorems.

UNIT IV

Geodesic parallels – Geodesic curvature – Gauss-Bonnet Theorem – Gaussian curvature – Surface of constant curvature.

UNIT V

Non-Intrinsic Properties of a Surface: The second fundamental form – Principal curvature – Lines of curvature – Developable – Developable associated with space curves and with curves on surface – Minimal Surfaces – Ruled Surfaces.

TEXT BOOK

2. T. J. Willmore, An Introduction to Differential Geometry, Oxford University Press, 17th Impression, New Delhi 2002, Indian print.

UNIT I: Ch 1 (1-9) UNIT II: Ch 2 (1-9) UNIT III: Ch 2 (10-13) UNIT IV: Ch 2 (14-18) UNIT V: Ch 3 (1-8)

- 1. D. T. Struik Lectures on classical Foundations of Differential Geometry, Addison Wesley, Mass 1950.
- 2. S. Kobayashi and K. Nornizu, Foundations of Differential Geometry, Interscience publishers, 1963.
- 3. Wihelm Klingenberg, A course in Differential Geometry, Graduate Texts in Mathematics, Springer Verlag, 1978.
- 4. J. A. Thorpe, Elementary topics in Differential Geometry, under graduate Texts in Mathematics, Springer Verlag, 1979.

Course	On completion of the course the student will be able to		
Outcomes	CO1: understand the concept of Graphs and Level sets-Vector fields		
	CO2: analyze surfaces and Vector field on surfaces		
	CO3: understand Gauss map-Geodesics.		
	CO4: apply Parallel Transport and Weingarten map.		

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course	Title	Hours/Week	Semester	Credits
15PM417	CC14	Stochastic Processes	6	4	4
	ive Level Objectives	K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze The Course aims to • learn the concepts of process with discrete stochastic process in o	state space, ren	ewal processe	
Employability and Skill Development		National need	Problem Learning	Solving & Par	ticipative

UNIT I

Stochastic Process: Some Notions – Introduction - Specifications of Stochastic Process – Stationary process - Markov Chains – Definition and examples -Higher transition probabilities – Generalization of independent Bernoulli trials – Sequence of chain – dependent trials.

UNIT II

Markov Chains – Classifications of States and Chains – Determination of higher transition probability – Stability of a Markov System – Markov chain with Denumerable Number of states – Reducible Chains.

UNIT III

Markov Processes with Discrete state space: Poisson Process and its Extensions – Poisson Process – Poisson Process and Related Distributions – Generalization of Poisson process – Birth and Death Process – Markov Processes with Discrete state space (Continuous time Markov Chains).

UNIT IV

Renewal Processes and Theory: Renewal Process – Renewal Processes in Continuous Time – Renewal Equation – Stopping Time – Wald's Equation – Renewal Theorems.

UNIT V

Stochastic process in queueing and reliability – Queueing Systems: general concepts, the Queueing model M/M/I model non- morkovian queueing models, the model GI/M/I

TEXT BOOK:

1 J. Medhi, Stochastic Processes, Second edition, New Age International (P) Ltd, New Delhi. UNIT I: Ch 2 (2.1-2.3) & Ch 3 (3.1-3.3) UNIT II: Ch 3 (3.4-3.6, 3.8, 3.9) UNIT III: Ch 4 (4.1-4.5) UNIT IV: Ch 6 (6.1-6.5) UNIT V: Ch 10: (10.1-10.3, 10.7, 10.8.) (Except 10.2.2, 10.2.3, 10.7.2.1, 10.7.3.2, 10.7.3.3, 10.7.3.4, 10.8.2)

- 1. Samuel Karlin, Howard M. Taylor, A first course in Stochastic Processes , Second Edition, Academic Press, 1981.
- 2. Narayan Bhat, Elements of Applied Stochastic Processes, Second edition, John wiley, 1984.
- 3. S.K.Srinivasan and K.Mehta, Stochastic Processes, TMH, 1976.
- 4. N.U.Prabhu, Stochastic Processes, Macmillan (NY), 1965.

Course Outcomes	On completion of the course, students should be able to CO1: understand the concept of various specifications of Stochastic Processes. CO2: apply the idea of Markov chain and Markov Processes to real life problems.
	CO3: demonstrate on renewal equation, stopping time and renewal theorem.
	CO4: apply the idea of queuing model to real life problems.

CORE ELECTIVE COURSES(CEC)

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course	Title		Hours/Weel	k	Semester	Credits
15PM314 b	CEC1A	Fluid Dynamics		6		3	4
$ \begin{array}{cccc} K-1 & \text{Acquire/Rem} \\ K-2 & \text{Understand} \\ K-3 & \text{Apply} \\ K-4 & \text{Evaluate} \\ K-5 & \text{Analyze} \\ \end{array} $		nember					
Course Objectives		The Co	give an introde give a feel of the analysis of flow	the applicatio			
Employability and Skill Development		Global	need		Probl Leari	lem Solving & ning	Participative

UNIT I

Kinematics of Fluids in Motion: Real Fluids and Ideal Fluids – Velocity of a fluid at a point – Streamlines and Path lines: Steady and Unsteady flows – The Velocity Potential – The vorticity vector – Local and Particle rates of change – The equation of continuity – Worked Examples – Acceleration of a fluid.

UNIT II

Equations of Motion of a Fluid: Pressure at a point in a fluid at rest – Pressure at a point is a moving fluid – Euler's Equations of motion – Bernoulli's equation - Discussion of the case of steady motion under Conservative Body Forces – Some Potential theorems – Impulsive motion.

UNIT III

Some Three-dimensional Flows: Sources, sinks and doublets – Images in rigid infinite plane – Images in solid spheres - Axisymmetric flour; Stoke's stream function.

UNIT IV

Some Two-dimensional Flows: The Stream function – The complex potential for two dimensional, irrotational, incompressible flow – Complex velocity potentials for standard two dimensional flows – some worked examples – Two dimensional image systems – The Milne Thomson circle theorem – The theorem of Blasis.

UNIT V

Viscous Flow: Stress components in a Real Fluid – Relations between Cartesian components of stress - Translational Motion of Fluid element – The Rate of Strain Quadric and Principal Stresses – Some Further properties of the Rate of Strain Quadric - Stress Analysis in Fluid Motion – Relations between stress and Rate of strain – The Co-efficient of viscosity and Laminar Flow – The Navier – Stokes Equations of Motion of a viscous Fluid-Some solvable problems in Viscous flow.

TEXT BOOK:

F. Chorlton, Text Book of Fluid Dynamics, CBS Publishers & Distributors, Delhi 1985.

UNIT I: Ch 2 (2.1 – 2.9), UNIT II: Ch 3 (3.1, 3.2, 3.4 – 3.8 & 3.11)

UNIT III: Ch 4 (4.2 – 4.5), UNIT IV: Ch 5 (5.1 – 5.9), UNIT V: Ch 8 (8.1 – 8.10)

- 1.H. Schlichting, Boundary Layer Theory, Me Grow Hill Co, New York, 1979.
- 2.R.K. Rathy, An Introduction to Fluid Dynamics, Oxford and IBH Pub. Co., New Delhi, 1976.
- 3. William F. Hughes and John A. Brighton, Fluid Dynamics (Schaum's Outlines), 2nd Ed., TMH, 1967.
- 4.J.D. Anderson, Computational Fluid Dynamics, the Basics with Applications, TMH, 1995.
- 5. A. J. Chorin and A. Marsden, A Mathematical Introduction to Fluid Dynamics, Springer verlag, New Delhi, 1993

Course Outcomes	On completion of the course, students should be able to CO1: understand the behavior of fluids in motion. CO2: understand the potential theorems of fluid flow CO3: apply the concept of complex analysis in the analysis of the flow of liquids. CO4: analyze the concept of sources, sinks & doublets and two dimensional
	flows.

Code	Course	Title	Hours/week	Semester	Credits		
15PM314a	CEC1B	Cryptography	6	3	4		
Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 						
Course Objectives	The Course aims to • learn the concepts of Encryption Schemes, Prime Number Generation, Factoring, Discrete Logarithms.						
Employability and Skill Development	Global need		Problem Solving Learning	& Participative	2)		

UNIT I

Encryption Schemes -Symmetric and Asymmetric Cryptosystems - cryptanalysis -

Alphabets and words -Permutations, Block ciphers -Multiple Encryption.

UNIT II

Probability –conditional Probability –Birthday Paradox – Perfect Secrecy- Vernam one – Time Pad –Random Numbers –Pseudorandom Numbers.

UNIT III

Prime Number Generation: Trial Division – Fermat Test – Carmichael Numbers – miller – Rabin Test – Random Primes. .

UNIT IV

Factoring: Trail Division – P-1 Method –Quadratic Sieve – Analysis of the Quadratic Sieve – Effienciency of other Factoring Algorithms.

UNIT V

Discrete Logarithms: The DL problems – Enumeration – shanks Baby Step Giant – Step Algorithm – The Pollard P – Algorithm – the pohlig – Hellman Algorithm – Index Calculus.

TEXT BOOK

Johannes A.Buchmann, Introduction to Cryptography, second edition, Springers.

UNIT I: Ch 3 (3.1-3.7) UNIT II: CH 4 UNIT III: Ch 7

UNIT IV: Ch 9 UNIT V: Ch 10 (10.1 -10.6)

REFERENCE BOOKS

1. William Stallings, Cryptography and Network Security, Principles and Practices, Fourth Edition, Prentice Hall of India.

.

On completion of the course, students should be able to
CO1:understand the basic concepts of cryptography.
CO2: analyze encryption and multiple encryption. CO3: apply Fermat test, Miller and Rabin test for prime number generation.
CO3. apply Fermat test, while and Rabin test for prime number generation. CO4: evaluate the DL problems.
C

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course	Title	Hours/Week	Semester	Credits	
15PM315b	CEC2A	Fuzzy Mathematics	6	3	4	
Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 					
Course Objectives	 The Course aims to help the student to gain the knowledge of the basics of fuzzy set theory, operations on fuzzy sets, fuzzy numbers, fuzzy relation, fuzzy graphs and fuzzy logic. 					
Employability and Skill Development	Global need		Problem Solving	g & Participativ	ve Learning	

UNIT 1: FUZZY SET THEORY

Fuzzy set, Type of Fuzzy sets, General definitions and properties of Fuzzy sets, General theorems, Solved examples.

UNIT 2: OPERATIONS ON FUZZY SETS

Introduction, Some important theorems, Extension Principle for Fuzzy sets, Fuzzy Complements-Some important theorems.

UNIT 3: FUZZY NUMBERS

Algebraic operations with Fuzzy numbers, Binary operation of two Fuzzy numbers, Extended operations for L.R representation of Fuzzy sets, Fuzzy Arithmetic, Fuzzy equations.

UNIT 4: FUZZY RELATIONS AND FUZZY GRAPHS

General definitions, Projections and Cylindrical Fuzzy relations, Composition, Properties of Min-Max composition, Binary relation on a single set, Solved examples, Compatibility relation, Fuzzy graph, Fuzzy morphisms, Fuzzy relation equations.

UNIT 5: FUZZY LOGIC

An overview of classical logic, Connectives, Types of sentences, Truth values and Truth table, Tautology, Algebra of Statements, Validity of Arguments, Logical identities of Crisp logic ,Well formed formulas Predicates and Quantifiers ,Quantifiers and logical operators ,Normal form, Fuzzy logic ,Fuzzy Connectives ,Fuzzy inference.

Text Book:

SUDHIR ,K.PUNDIR & Dr.RIMPLEPUNDIR "Fuzzy sets and their Application".

UNIT 1: Ch 1(1.16-1.19) ,UNIT 2: Ch 2(2.1-2.5)

UNIT 3: Ch 3(3.2-3.4,3.6-3.9) UNIT 4: Ch 4(4.1-4.6,4.8,4.9)

UNIT 5: Ch 7(7.1-7.15)

Reference Book:

1. George J.Klir and B.Yuan.Fuzzy sets and Fuzzy Logic , Prentice Hall of India New Delhi,2004.

2. H.J.Zimmermann, Fuzzy set Theory and its Applications, Allied Publishers Ltd,New Delhi,1991.

Course Outcomes	On completion of the course, students should be able to CO1: to know the basic Mathematical elements of the theory of fuzzy sets CO2: gain Knowledge about the fuzzy arithmetic and fuzzy number CO3: to understand the difference and similarities between fuzzy sets and classical set theories. CO4: apply the fuzzy logic in real life situation
--------------------	---

(NMC - M.SC Mathematics Syllabus - For the candidates admitted for the academic year 2015 onwards)

Code	Course	Title	Hours/Week	Semester	Credits
15PM315a	CEC2B	Combinatorics	6	3	4
Cognitive Level	K1 – Acquire/Rem K2 – Understand K3 – Apply K4 – Evaluate K5 – Analyze	ember			
Course Objectives		to oncepts of permutation relation, the principle of			function,
Employability and Skill Development	Global need		Problem Solving &	Participative	Learning

UNIT I

Permutations and combinations-distributions of distinct objects –distributions of non distinct objects - Stirlings formula.

UNIT II

Generating functions-generating function for combinations-Enumerators for permutations-distributions of distinct objects into non-distinct cells-partitions of integers-the Ferrers graphs-elementary relations

UNIT III

Recurrence relations-linear recurrence relations with constant coefficients solutions by the technique of generating functions –special class of nonlinear difference equations- recurrence relations with two indices.

UNIT IV

The principle of inclusion and exclusion-general formula-permutations with restriction on relative position-derangements-the rook polynomials-permutations with forbidden positions.

UNIT V

Polya's theory of counting-equivalence classes under a permutation group Burnside theoremequivalence classes of functions-weights and inventories of functions-Polya's fundamental theoremgeneration of Polya's theorem.

TEXT BOOK

C.L. Liu, Introduction to Combinatorial Mathematics, TMH, New Delhi.

UNIT I: Ch 1 UNIT II: Ch 2 UNIT III: Ch 3 UNIT IV: Ch 4 UNIT V: Ch 5

- 1. Marshall Hall.Jr., Combinatorial Theory.
- 2. H.J.Rayser, Combinatorial mathematics, Carus, Mathematical Monograph.No.14

	On completion of the course, students should be able to
Course Outcomes	CO1: understand the basic concepts of permutation and combination . CO2: analyze the principle of inclusion and exclusion for counting the number of elements in the union of two finite sets . CO3: apply the Polya's theorem for counting. CO4: acquire the knowledge of recurrence and linear recurrence relations with constant co-efficient .

Code	Course	Title	Hours/Week	Semester	Credits		
15PM418a CEC3A		Numerical Analysis	6	4	4		
Cognitive Level	K2 – Uno K3 – App	K1 – Acquire/Remember K2 – Understand K3 – Apply K4 – Evaluate; K5 – Applyze					
Course Objectives	• k	 The Course aims to know the theory behind various numerical methods. apply these methods to solve mathematical problems. 					
Employabili and Skill Developmen		need		Problem Solving & Participative Learning			

UNIT I

Transcendental and Polynomial Equations: Rate of convergence – Iterative Methods – Polynomial Equations: Bridge – Vista method, Barstow's method, Graffe's root squaring method.

UNIT II

System of Linear Algebraic Equations and Eigen Value Problems: Error Analysis of direct and iteration methods – Finding Eigen values and Eigen vectors – Jacobi and Power methods.

UNIT III

Interpolation and Approximation: Hermit Interpolations – Piecewise and Splice Interpolation – Vicariate Interpolation – Approximation – least square approximation.

UNIT IV

Differentiation and Integration: Numerical Differentiation – optimum choice of step – length Extrapolation methods – Partial Differentiation – Methods based on undetermined coefficients – Gauss Methods.

UNITV

Ordinary Differential Equations: Local truncation error – Euler, Backward Euler, Midpoint, Taylor's Method and second orders Runge – kutta method – stability analysis.

TEXT BOOK

M.K.Jain, S.R.K.Iyengar and R.K.Jain, "Numerical Methods for Scientific and Engineering Computation" III Edition, Wiley Eastern Ltd., 1993.

UNIT I: Ch 2 (2.5-2.8) UNIT II: Ch 3 (3.1 - 3.5) UNIT III: Ch 4(4.5 - 4.9) UNIT IV: Ch 5 (5.2 - 5.5 & 5.8) UNIT V: Ch 6 (6.2, 6.3 & 6.6).

- Kendall E. Atkinson, "An Introduction to Numerical Analysis. II Edition, John Wiley & sons 1988.
- 2. M.K.Jain, Numerical Solution of Differential Equations, II Edition New Age International Pvt Ltd 1983.
- 3. Samuel. D.Conte, Carl De Boor, Elementary Numerical Analysis. McGraw Hill International Edition., 1983.

	On completion of the course, students should be able to
Course Outcomes	 CO 1: obtain the solutions of transcendental and polynomial equations. CO 2: apply direct methods and iteration methods for solving system of equations. CO 3: apply Hermit interpolation, piecewise and spline interpolation. CO 4: solve problems using interpolation and ordinary differential equations using numerical methods.

Code	Course	Title		Hours/Week	Semester	Credits	
15PM418b	CEC2B	Optimiza	tion	6	4	4	
		Techniq	ues				
	K1 – Acquire/Rem	ember					
G '4'	K2 – Understand						
Cognitive	K3 – Apply						
Level	K4 – Evaluate						
	K5 – Analyze						
	The Course aims t	to					
Course	 provide the 	knowledge of	various op	timization te	chniques like	integer	
Objectives	programmi	ng, dynamic	programmi	ng, decision	theory and	d games,	
	inventory n	nodels, non-line	ar Programn	ning algorithn	ıs		
Employability	National need		Prob	lem Solving &	Participative	Learning	
and Skill				_	-	_	
Development							
_							

UNIT I

Integer Programming

UNIT II

Dynamics (Multistage) Programming

UNIT III

Decision Theory and Games.

UNIT IV

Inventory Models

UNIT V

Non-Linear Programming algorithms

TEXT BOOK

Hamby A. Taha, Operations Research (4th End), McGraw Hill Publications, New Delhi.2002.

Unit I: Ch 8 (8.1-8.5) Unit II: Ch 9 (9.1-9.5) Unit III: Ch 11 (11.1-11.4)

Unit IV: Ch 13 (13.1-13.4) Unit V: Ch 19(19.1& 19.2)

- 1. O.L. Mangesarian, Non Linear Programming, TMH, New Yark.
- 2. Mokther S.Bazaraa and C.M. Shetty, Non Linear Programming, Theory and Algorithms, Willy, New Yark.
- 3. Premkumar Gupta and D.S. Hira, Operations Research: An Introduction, S. Chand and Co., Ltd. New Delhi.
- 4. S.S.Rao, Optimization theory and Applications, Wiley Eastern Ltd, New Delhi.

Course Outcomes	On completion of the course, students should be able to CO1: understand the concept of integer programming and dynamic programming. CO2: analyse the problems based on decision theory and game theory. CO3: get optimize inventory models. CO4: evaluate non-linear programming problems.
--------------------	--

Code	Course	Title	Hours/Week	Semester	Credits	
15PM419a	CEC4A	Classical Dynamics	6	4	4	
Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 					
Course Objectives	 The Course aims to gain a detailed knowledge of the mechanical system of particles. learn the applications of Lagrange's and Hamilton's equations. 					
Employability and Skill Development	Global need		articipative learn olving	ing and Prob	lem	

UNIT	Content	No. of Hours
I	Introductory concepts: Mechanical system – Generalized Coordinates Constraints – Virtual Work – Energy and Momentum.	15
II	Lagrange's equations: Derivations of Lagrange's Equations – Examples – Integrals of Motion.	15
III	Hamilton's equations: Hamilton's Principle – Hamilton's Equations.	15
IV	Hamilton – Jacobi theory: Hamilton's Principle function – Hamilton-Jacobi Equation.	15
V	Canonical transformations: Differential forms and Generating Functions – Lagrange and Poisson Brackets.	15
Reference	Text Book: Donald T. Greenwood, Classical Dynamics, Dover Publication. UNIT- I: Ch1 (§1.1 – 1.5) UNIT- II: Ch2 (§2.1 – 2.3) UNIT- III: Ch4 (§4.1 - 4.2) UNIT- IV: Ch5 (§5.1-5.2) UNIT- V: Ch6 (§6.1-6.3). Reference Books: 1. Goldstein, H. ,Classical Mechanics. Addison Wesley Pre 2. Synge, J.L. and Griffith, B.A., Principles of Mechanics. McGraw-Hill company,1959	ss, Inc.,1950

Course	CO 1: understand the 3N-Coordinate system made up of N-Spatial coordinates, N-velocity coordinates and N-acceleration coordinates
Outcomes	CO 2: analyse the motion of mechanical systems with constraints using Lagranian description
	CO 3: apply Hamilton's principle and gain proficiency in solving equations o motions
	CO 4: use the Hamilton-Jacobi theory in solving equations of motions

Code	Course	Title	Hours/Week		Credits
15PM419c	CEC4C	Mathematical	6	4	4
		Probability and Statisti	cs		
Cognitive Level	K1 – Acquire/R K2 – Understan K3 – Apply K4 – Evaluate K5 – Analyze				
Course Objectives	The Course air learn the Applica	ne concepts of Probabil	ity, Random Va	riables and	Statistical
Employability and Skill Development	Global need Problem Solving & Participative Learnin			Learning	

Unit I

Probability spaces: Definition of Probability- Some Simple Properties-Discrete Probability Space-General Probability Space-Induced Probability Space.

Unit II

Distribution Functions: Distribution Function of Random Variables-Decomposition of Distribution Functions. Expectation and Moments: Definition of Expectation-Properties of Expectation-Moments, Inequalities.

Unit III

Definition of density function of Chi-square distribution-Constants of the Distribution-Additive Property-Test of Goodness of fit –Test of Independence of attributes

Unit IV

Student's t- statistic-Definition of density function of student's t-distribution- Properties of the Distribution-Test for single mean and difference of means-Paired t-test for difference of means

Unit V

F-Statistic-Definition of density function of F Variate –Test of Population Variances-Relations between F, t, Chi-square distributions-Analysis of Variance- One way and Two way ClasSification.

Text Book:

B. Ramdas Bhat, Modern Probability Theory, II Edition, Wiley Eastern Ltd, 1988.

Unit 1: Ch 1(1.1-1.4)& Ch 2(2.1-2.4)Unit 2: Ch 3(3.1-3.6) Unit 3: Ch 4(4.1-4.4)

Unit 4: Ch5(5.1-5.3) Unit 5: Ch 7(7.1-7.5)

Reference Book:

- 1.Sheldon Ross, First course in probabilitdy, Maxwell Mac. Millar International Edition, New York, VI Edition, 2008.
- 2.Geoffery Grimmell and Domeonic Welsh, Probability-An Introduction, Oxford University press,1986, 3.M.Fisz, Probability Theory and Mathematical Statistics, John Wiley and Sons, New York, 1963.

4.K.L. Chung, A Course in Probability, Academic Press, NewYork, 1974.

	On completion of the course, students should be able to
	CO1: understand the basic concepts of fundamental probability.
	CO2: apply the test of goodness of fit.
Course	CO3: analyze the concept of Chi- square distribution.
Outcomes	CO4: acquire the knowledge of one way and two way classification.

Code	Course	Title	Hours/week	Semester	Credits		
15PM419b	CEC4B	Coding Theory	6	4	4		
Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 						
Course Objectives	 The Course aims to provide the concept of linear Block Codes, Cyclic Codes, Rings and Polynomials, Cyclic Codes, Rings and Polynomials, Bounds on codes. 						
Employability	National need Problem Solving & Participative Learni						

UNIT I

Linear Block Codes: Basic Definitions, The Generator Matrix, Description of Linear Block codes, the parity check matrix and Dual Codes, Error Deletion and Correction over Hand-Input Channels, Weight, Distributions of Codes and their Duals.

UNIT II

Hamming Codes and their codes, Performance of linear codes, Modifications to Linear Codes, Best Known Linear Block Codes

UNIT III

Cyclic Codes, Rings and Polynomials: Introduction, Basic Definitions, Rings, Quotient Rings, Ideals in Rings, Algebraic Description of Cyclic Codes, Nonsystematic Encoding and Parity Check, Systematic Coding.

UNIT IV

Some Hardware Background, Cyclic Encoding, Syndrome Decoding.

UNIT V

Bounds on codes: The Gilbert – Varshamov Bound, The Poltkin Bound, The Griesmer Bound, The Linear Programming and Related Bound, the MCEliece-Rodemich-Rumsey-Welsch Bound.

TEXT BOOK

Toddk. Moon, Error Correction Coding Mathematical Methods and Algorithms, Wiley Interscience & John Wiley & Sons, INC., Publications.

UNIT I: Ch 3(3.1-3.4), UNIT II: Ch 3 (3.5-3.10), UNIT III: Ch 4 (4.1-4.8)

UNIT IV: Ch 4(4.9-4.11) UNIT V: Ch 9 (9.1-9.5).

REFERENCE BOOKS

1. S.J.Macwilliams and N.J.A. Slone, The theory of Error-Correcting Code, Amster Bam, North Holland, 1977.

2. Raymond Hill, A First Course in Coding Theory, Clarendon Press, Oxford, 1986.

Course Outcomes	On completion of the course, students should be able to CO1: apply linear block codes for error deduction and correction CO2: understand the importance in the design of codes. CO3: apply the tools of linear algebra to construct special type of codes. CO4: use algebraic techniques in designing coefficient and reliable data transmission methods.
--------------------	--

OPEN ELECTIVE COURSE

Code	Course	Title	Hours/week	Semester	Credits	
15PM210b	OEC1 - Open to all(except Maths Major)	Mathematical Modeling And Simulation	6	2	4	
Cognitive Level	 K-1 Acqu K-2 Unde K-3 Apply K-4 Evalu K-5 Analy 					
Course Objectives	The Course aims to • learn the concepts of mathematical modeling and simulation					
Employability	National need Problem So Learning			ng & F	& Participative	
UNIT	Content				of Hours	
I	Statistical Mode And Concepts – Distributions – Empirical Distr	-	15			
II	Queueing Motor of Infinite –.I. Queueing Syste		15			
III	Queueing M populations Ma Finite Population	r of	15			
IV	Random –Number Generation: Properties of Random Numbers – Generation of Pseudo - Random Numbers – Techniques for Generating random Numbers – Tests for random Numbers.				15	
V	Random –Varia Direct Transfe Convolution M Technique	. –	15			

	Text Books: Jerry Banks, John S.Carson, Barry l.Nelson, Discrete – Event system Simulation, Second edition, Prentice – Hall of India, 1998.							
Reference	LINUTE I. CL. C.							
	UNIT-I : Ch 6							
	UNIT-II : Ch 7(§7.1-7.4)							
	UNIT-III: Ch 7(§7.5-7.7)							
	UNIT-IV: Ch 8							
	UNIT-V: Ch 9							
	CIVIT V . CITY							
	Reference Books:							
	Geoffrey Gordon, System Simulation, Second edition, Prentice Hall of							
	India, New Delhi, 1995.							
	mara, ivew Benn, 1995.							
	On completion of the course, students should be able to do							
Course	CO 1: acquire the role of discrete and continuous distributions in simulation							
Outcomes	CO 2:understand the steady state behavior of queuing models							
	CO 3: evaluate the performance measures of queuing system							
	1 0 1							
	CO 4: demonstrate on random number and variate generation							

Code	Course	Title	Hours/week	Semester	Credits	
15PM210c	OEC2 - Open to all(except Maths Major)	Statistics	6	2	4	
Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Evaluate K-5 Analyze 					
Course Objectives	 The Course aims to gain the knowledge of data collection and classification, measures of dispersion, correlation and regression test the data for goodness of fit analyze data using chi square statics 					
Employability	Local need Problem Solving & Learning			ng & P	& Participative	
Course Code & Title						
Class						
Cognitive Level						
Course Objectives	•					
Employability	Local need		Participative lear solving	ning and Pro	oblem	
UNIT	Content			No.	of Hours	
I	Collection, Classification and Tabulation of data –Graphical and Diagrammatic Representation of Data-Bar Diagrams, Pie Diagram, Histogram, Frequency Polygon, Frequency curve and Gives- Measures of Central Tendency-Mean, Median and Mode in Series of Individual Observation, Discrete and Continuous Series, More than Frequency, Less than Frequency, Mid value and Open End Class.				15	
II		spersion- Range, Quartile an average, Standard De			15	

	Coefficient of Variation for Individual, Discrete and Continuous type data.	
III	Correlation-Different types of Correlation- Positive, Negative, Simple, Multiple, Linear and Non Linear Correlation, Methods of Correlation- Karl Pearson's and Spearman's Correlation-Concurrent Deviation Method.	15
IV	Regression Types and Method of Analysis, Regression Line, Regression Equations, Derivation taken from Arithmetic Mean of X and Y, Derivation taken from Assumed Mean, Partial and Multiply Regression Coefficients- Applications.	15
V	Chi-Square tests for Variance, Goodness of fit (Expected frequencies are equal or in a specified proportion only) and independence of attributes F test for equality of two Variances, Analysis of Variance- One way, Two Way and Latin Square design.	15
	 Text Books: S.C.Gupta and V.K.Kapoor, Fundamentals of Statistics, Sultan Chand and Sons New Delhi 1994. S.C.Gupta, Fundamentals of Statistics, 6th Revised and Enlarged Edition, Himalaya Publishing House. 	
Reference	UNIT-I : Ch4(§4.1-4.4),Ch 5(§5.1-5.8) of (1) UNIT-II : Ch6(§6.4-6.9,6.12)of(1) UNIT-III : Ch 8(§8.1-8.4,8.7,8.8) of (1) UNIT-IV : Ch 9(§9.1-9.4) of (1) UNIT-V : Ch18(§18.1,18.2,18.4-18.6) of (2)	
	 Reference Books: J.E. Freund, Mathematical Statistics, Prentice Hall of India. A.M. Goon, M.K. Gupta, B.Dos Gupta, Fundamentals of Statistical, Vol – I, World Press, Calcutta, 1991. 	
Course Outcomes	On completion of the course, students should be able to CO 1: represent data diagrammatically CO 2: evaluate measures of dispersion CO 3: apply correlation and regression analysis CO 4: demonstrate on analysis of variance	